Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$ *

${ }^{\text {a }}$ College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$w R$ factor $=0.153$
Data-to-parameter ratio $=15.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Carboxyphenoxy)propionic acid

The molecules of the title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5}$, are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a linear chain along [201].

Received 13 July 2006 Accepted 17 July 2006

Comment

The crystal structures of 2- and 3-carboxyphenoxyacetic acid have been reported previously. The 2 -isomer exists as a zigzag chain polymer hydrogen-bonded through a pair of hydrogen bonds (Byriel et al., 1991), whereas the 3 -isomer exists as a monohydrate that displays a three-dimensional hydrogenbonded network (Gu et al., 2004). The structure of the 4isomer has not been reported to date, as the compound does not furnish single crystals. Interest in the 4 -isomer is extended to the title compound, (I), which has an extra methylene linkage.

The title compound is anhydrous (Fig. 1). A pair of hydrogen bonds (Table 1) links adjacent molecules into a linear chain along [201] (Fig. 2).

Experimental

4-Carboxyphenoxyacetic acid was synthesized in a manner analogous to that used for synthesizing 3-carboxyphenoxyacetic acid (Gu et al., 2004), but with 4-hydroxybenzoic acid in place of 3-hydroxybenzoic acid and 3-chloropropionic acid in place of chloroacetic acid. Colourless crystals of (I) separated from the aqueous solution after several days.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{5} & Z=4 \\
M_{r}=210.18 & D_{x}=1.457 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Monoclinic, } P 2_{1} / c & \text { Mo } K \alpha \text { radiation } \\
a=7.813(4) \AA & \mu=0.12 \mathrm{~mm}^{-1} \\
b=9.032(6) \AA & T=295(2) \mathrm{K} \\
c=13.631(9) \AA & \text { Plate, colourless } \\
\beta=94.92(2)^{\circ} & 0.42 \times 0.17 \times 0.08 \mathrm{~mm} \\
V=958(1) \AA^{3} & \\
& \\
\text { Data collection } & \\
\text { Rigaku R-AXIS RAPID IP } & 9176 \text { measured reflections } \\
\quad \text { diffractometer } & 2188 \text { independent reflections } \\
\omega \text { scans } & 1359 \text { reflections with } I>2 \sigma(I) \\
\text { Absorption correction: multi-scan } & R_{\text {int }}=0.035 \\
\quad(A B S C O R ; \text { Higashi, 1995) } & \theta_{\max }=27.5^{\circ}
\end{array}
$$

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Refinement

Refinement on F^{2} $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$ $w R\left(F^{2}\right)=0.153$
$S=1.00$
2188 reflections 144 parameters

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0912 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1O $\cdots \mathrm{O} 4^{\mathrm{i}}$	$0.83(1)$	$1.82(2)$	$2.618(2)$	$162(5)$
O5-H5O $^{\mathrm{H}} \mathrm{O}^{\text {ii }}$	0.84 (1)	$1.85(1)$	$2.676(2)$	$173(5)$

Symmetry codes: (i) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x-1,-y+\frac{3}{2}, z+\frac{1}{2}$.
Carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ $=0.93$ or $0.97 \AA$, and were included in the refinement in the ridingmodel approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The acid H atoms were located in a difference Fourier map and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.82$ (1) \AA; their displacement parameters were freely refined.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), the Scientific Fund for

Figure 2
The hydrogen-bonded (dotted lines) chain structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036) and the University of Malaya for supporting this study.

References

Byriel, K. A., Smith, D. E. \& Kennard, C. H. L. (1991). Aust. J. Chem. 44, 14591464.

Gu, C.-S., Liu, J.-W., Huo, L.-H., Zhao, H., Zhao, J.-G. \& Gao, S. (2004). Acta Cryst. E60, 0760-o761.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

